



## Fifth Semester B.E. Degree Examination, Jan./Feb. 2021 Hydrology and Irrigation Engineering

Time: 3 hrs.

Max. Marks:100

10CV55

## Note: 1. Answer any FIVE full questions, selecting at least TWO full questions from each part. 2. Assume missing data, if any suitably.

## PART – A

- Define precipitation. Explain different types of precipitation with sketches. 1 a. (10 Marks)
  - Explain Thiessen and Isohyet methods of computing average rainfall. (05 Marks) b.
  - The normal annual rainfall of stations A, B, C and D in a catchment are 80.97, 67.59, 76.28, C. 92.01cm. In the year 2006, the station D was in operative when station A, B, C recorded annual rainfall of 91.11, 72.23, 79.89 cm. Estimate the missing rainfall at D in the year 2006 by normal ratio method. (05 Marks)
- 2 Define evaporation. Estimate evaporation by i) Meyer's ii) Rohwer's equations using a. given data:

Reservoir area = 3km<sup>2</sup>

Water temperature =  $25^{\circ}$ C and

Saturated vapour pressure of water = 23.75mm of mercury

Wind velocity at surface, V = 10 km/hr

Barometric reading = 750mm of mercury

Relative humidity = 45%

- Find also volume of water evaporated per week.
- b. Explain factors affecting Evapo-transpiration.
- A seven-hour storm over a basin of 1830km<sup>2</sup> produced the rainfall intensities at half an hour C. interval are 4, 9, 20, 18, 13, 11, 12, 2, 8, 16, 17, 13, 6 and 1 mm/hr. The runoff volume is  $73.2 \times 10^6 \text{m}^3$ . Estimate  $\phi$ -index of the storm. (05 Marks)
- Define hydrograph. Explain any three methods of base flow separation. 3 a.
  - The following are the ordinates of the flood hydrograph from a catchment area of 780km<sup>2</sup> b. due to 6 hr storm. Derive the 6hr unit hydrograph of the catchment assume a base flow of  $40 {\rm m}^3/{\rm s}$ .

| <u>.</u> | Time (hr)                     | 6  | 12 | 18  | 24  | 6   | 12  | 18  | 24  | 6   | 12  | 18 | 24    | 6      |
|----------|-------------------------------|----|----|-----|-----|-----|-----|-----|-----|-----|-----|----|-------|--------|
| K        | Discharge (m <sup>3</sup> /s) | 40 | 64 | 215 | 360 | 405 | 350 | 270 | 205 | 145 | 100 | 70 | 50    | 40     |
| Ń        |                               |    |    |     |     |     |     |     |     |     |     |    | (05 I | Marks) |

A 4-hr unit hydrograph is given as:

| Time (hr)                    | 0 | 2 | 4  | 6  | 8  | 10 | 12 | 14 | 16 | 18 | 20 |
|------------------------------|---|---|----|----|----|----|----|----|----|----|----|
| 4-hr WHO                     | 0 | 9 | 19 | 20 | 14 | 12 | 8  | 5  | 3  | 1  | 0  |
| Derive 8-hr unit hydrograph. |   |   |    |    |    |    |    |    |    |    |    |

(05 Marks)

- Mention the factors affecting the flood. Explain briefly estimation of flood using envelope 4 a. curves and empirical formulae. (10 Marks)
  - Explain relationship of out flow and storage. b.
  - Briefly explain Muskingum routing method. c.

(10 Marks)

(05 Marks)

(10 Marks)

(05 Marks)

(05 Marks)

(05 Marks)

(05 Marks)

(10 Marks)

(05 Marks)

(10 Marks)

(05 Marks)

## PART – B

- List different needs for Irrigation. Explain advantages and disadvantages of irrigation. 5 a. (10 Marks)
  - Explain with a neat sketch Furrow method of gravity irrigation system. b.
  - Explain different types of infiltration galleries. c.
- Define frequency of irrigation. Calculate frequency of irrigation in (days) to ensure 6 a. sufficient irrigation of a certain crop using data: Field capacity of soil = 28%Permanent wilting point = 13%Density of soil = 1.3 gm/ccEffective depth of root zone = 70cm CENTRA Daily consumptive use = 12 mmLIBRAR Readily available moisture = 80% of available moisture. ks)
  - b. Explain functions of Irrigation soils.
  - Explain soil-water-plant relationship using a neat sketch. c.
- Par. Mano ks) (05 Marks)
- List different types of Irrigation efficiencies. A stream of 130 litres/sec was delivered from a 7 a. canal and 100 litres/sec were delivered to the field. An area of 1.6 hactares was irrigated in 8 hours. The effective depth of root zone was 1.7mt. The run off loss in the field was 420m<sup>3</sup>. The depth of water penetration vary linearly from 1.7m at head end of field to 1.1m at the tail end. Available moisture holding capacity of the soil is 20cm/mt depth of soil. Irrigation was started at a moisture level 50% of the available moisture. Determine:
  - Water conveyance efficiency i)
  - Water application efficiency ii)
  - iii) Water storage efficiency
  - Water distribution efficiency. iv)
  - Define Duty, Delta and Base period and state the relationship between them. b. (05 Marks)
  - Write brief note on crop seasons of India. C.
- Explain different types of canals. 8 a.
  - Compare Kenedy's and Lacey's method of design of canal. b.
  - Design a channel for a discharge of 50m<sup>3</sup>/s and silt factor 1.1, the side slope of channel is C. 1/2 H:1V. Also determine the bed slope of channel. (05 Marks)